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Oxidative stress, which is defined as the over-production of free radicals, can dramatically alter neuronal
function and has been linked to status epilepticus (SE). The pathological process and underlying
mechanisms involved in the oxidative stress during SE are still not fully clear. In the current study, SE was
induced in rats by lithium-pilocarpine administration. Our data show that hippocampal neuron death
occurs at 6 h and is sustained for 7 days after SE. The production of nitric oxide (NO) started to increase at
30 min and was evident at 6 h and 7 days after SE, which coincided with increased expression of
neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and malondialdehyde
(MDA) after SE, whereas, activated caspase-3 prominently appeared at 7 days after SE. Further, FK506, an
immunosuppressant, partially rescued the neuron death and attenuated the expression of NO, nNOS,
iNOS, MDA and activated caspase-3. Taken together, our study indicates that oxidative stress mediated
hippocampal neuron death occurs prior to caspase-3 activation and that FK506 plays an important role
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in protecting hippocampal neurons during status epilepticus.
© 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Status epilepticus (SE) is a severe clinical manifestation of
epilepsy and has functional and structural consequences resulting
in brain damage.! There are a number of physiological and
neurochemical changes that take place during the seizure activity.?
Notably, oxidative stress can dramatically alter neuronal function
and has been associated with neurochemical changes observed
during SE and spontaneous recurrent seizure (SRS) induced by
pilocarpine >4

Oxidative stress is defined as an imbalance between higher
cellular levels and reactive oxygen species (ROS), such as
superoxide radical, hydrogen peroxide and nitric oxide (NO)>
and cellular antioxidant defense including superoxide dismutase
(SOD).® Brain tissue is particularly vulnerable to oxidative damage
because of its high consumption of oxygen and the consequent
generation of high quantities of free radical. Growing data suggest
that injury resulting from oxidative stress may play an important
role in the pathophysiology following acute neurological insults
such as stroke and seizures.”

NO is formed from arginine by the action of three kinds of
nitric oxide synthase (NOS) isoforms, two calcium-dependent

* Corresponding author. Tel.: +86 13791120819.
E-mail address: wangah_0052@sina.com (A. Wang).

forms, i.e., neuronal (nNOS) and endothelial (eNOS), and one
calcium-independent form, i.e., inducible nitric oxide synthase
(iNOS). In the nervous system, nNOS is largely responsible for
NO production at early stages after SE. iNOS has been implicated
in some important central processes® and produces large
amounts of NO continuously for long periods, a feature that is
responsible for the cytotoxicity of NO. It may play an important
role during chronic stress and apoptotic cell death in the
hippocampus in SE rats.

As a freeradical, NO is widely regarded as a messenger molecule
that participates in diverse physiological processes in the central
nervous system (CNS), including brain development, pain percep-
tion, neuronal plasticity, memory and behavior.® However, NO is
also involved in a number of pathological conditions, such as
Alzheimer’s disease, Parkinson’s disease, Huntington’s disease,
multiple sclerosis, amyotrophic lateral sclerosis, cerebral ischemia,
traumatic brain injury and epileptic seizure.!® A strong NO
activation was found in the hippocampus and other brain regions
following KA-induced SE. On the basis of animal experiments, NO
has been implicated in many of the molecular mechanisms of
epileptic seizures, ranging from mediation of an excitotoxic
cascade to modulation of the CNS blood flow during the episodes,
and finally to participation in the subsequent neuronal injury.''~!>
When overproduced, much of the newly synthesized NO will
be converted into peroxynitrite, which is an extremely potent
free radical.'*'> This substance subsequently interferes with

1059-1311/$ - see front matter © 2010 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

doi:10.1016/j.seizure.2010.01.010


mailto:wangah_0052@sina.com
http://www.sciencedirect.com/science/journal/10591311
http://dx.doi.org/10.1016/j.seizure.2010.01.010

166 J. Liu et al./Seizure 19 (2010) 165-172

mitochondrial energy metabolism, and may even cause death of
neurons by necrosis or apoptosis.'®

FK506, an immunosuppressive agent, commonly used in
clinical settings for the prevention of allograft rejection!”!® is
also known for its strong neuroprotective effects following brain
damages of different origins.'®2° In a recent study, we have shown
in our lab that FK506 could control chronic refractory seizure via
inhibiting calcineurin (CaN) mediated GABAAR dephosphoryla-
tion.2! Our current study was designed to investigate whether and
how oxidative stress participates in this process using lithium
chloride-pilocarpine-induced SE (LPCSE) rat model.

2. Experimental procedures
2.1. Experimental animals

8-12 weeks-old male Wistar rats weighing between 250 and
280 g were used in this study (Experimental Animal Center of
Shandong University, China). The rats were housed under
controlled temperature and light conditions (12 h light; 12 h dark
cycle with lights on at 08:00 a.m.), with free access to food and
water. The experimental procedures were approved by the
Commission of Shandong University for ethics of experiments
on animals in accordance to international standards.

2.2. Pre-treatment of animals

The rats were randomly divided into four groups (n = 54 in each
group, totaling 216): control group, pilocarpine group (pilo group),
saline + pilo group and FK506 + pilo group (FK506 group). In FK506
group, the animals were further treated with FK506 (Fujisawa,
Japan) (2 mg/kg, i.p.) 24 h and 1 h before pilocarpine administra-
tion. In addition, rats in saline + pilocarpine group were treated as
FK506 group except that FK506 was replaced by the same dose of
0.9% saline. Pilocarpine group animals were treated with pilocar-
pine with no pre-treatment. Control group animals were treated as
pilocarpine group with the same dose of 0.9% saline instead of
pilocarpine. The animals of each group, which consisted of seven
subgroups (six rats in each subgroups) with 0.5 h, 2 h,6h, 12 h, 1
day, 3 days, and 7 days after treatment, were sacrificed for the
estimation of NO, NOS, MDA, SOD and immunoblotting. Six rats
were killed at 6 h and six rats at 7 days for immunohistochemical
techniques.

2.3. Induction of seizures

The rats were pretreated with lithium chloride (3 mequiv./kg,
i.p.) 24 h before injection of scopolamine methylnitrate (1 mg/kg,
s.c.) that does not cross the blood-brain barrier to prevent
peripheral cholinergic effects without affecting the central nervous
system. Pilocarpine was administered 30 min after scopolamine
methylnitrate (s.c.). Every effort was made to reduce the number of
animals used and minimize animal suffering. After 1 h when the
rats developed convulsive seizures at stage IV or V according to
Racine,?? they were treated with diazepam (10 mg/kg, i.p.) to stop
SE. Control group animals were treated with the same dose of 0.9%
saline instead of pilocarpine.

2.4. Tissue sampling

Six animals from each group were sacrificed at 0.5 h, 2 h, 6 h,
12 h and 1 day, 3 days and 7 days after SE. Since numerous studies
have identified that hippocampus is one of the most important
brain regions involved in pathological process of epilepsy, the
hippocampus was isolated, and stored at —80 °C until further
processing.

2.5. Histology

Rats were perfused with 4% paraformaldehyde in PBS under
anesthesia at different times after seizures. The brains were
sectioned coronally in 10 wm thickness. H&E staining with
hematoxylin and eosin was then performed. The surviving cells
were defined as round-shaped, cytoplasmic membrane-intact
cells, without any nuclear condensation or distorted aspect. The
surviving pyramidal cells in the hippocampal CA3 region were seen
at high magnification (400x).

2.6. Assay for NO and NOS activity

Left hippocampus of rats was weighed, and homogenized in
saline (10%wt/vol) or HEPES buffer (20%wt/vol). Saline homoge-
nate was used for the estimation of NO content, and NOS activity
was measured in the HEPES-buffered homogenate.

It is reported that nNOS is the main isoform of cNOS
(constitutive nitric oxide synthase, including the isoforms of nNOS
and eNOS).?? Since the activity of nNOS has not been measured
directly, cNOS activity was measured to reflect the activity of nNOS
indirectly. The activities of cNOS, iNOS as well as the concentra-
tions of NO in the supernatant were determined using commer-
cially available kits (Nanjing Jiancheng Bioengineering Institute,
China) according to the manufacturer’s instructions. NO is an
extremely labile molecule and turns rapidly to NO,~ and NO3™~ in
vivo. The assay of NO level was based on nitrate reductase which
specifically convert NOs~ to NO,~ that was measured at a
wavelength of 550 nm. cNOS is calcium-dependent and iNOS is
calcium-independent, the criteria on which the discrimination of
two kinds of isoforms were based.

2.7. Assay for MDA and SOD

Saline homogenate was used for the estimation of MDA
contents and superoxide dismutase (SOD) activities by using
commercially available kits (Jiancheng Bioengineering, NanJing,
China). All procedures completely complied with the manufac-
turer’s instructions. Lipid peroxidation (LPO) was assessed by
measuring the concentration of malondialdehyde in the form or a
stable chromophoric reaction product with thiobarbituric acid
(TBA) measured at a wavelength of 532 nm. The assay of SOD
activity was based on its ability to inhibit the oxidation of oxymine
by superoxide anion produced from the xanthine-xanthineoxidase
system. One unit of SOD activity was defined as the amount that
reduced the absorbance at 550 nm by 50%.

2.8. Immunohistochemistry

The rats were anesthetized with chloral hydrate (500 mg/kg IP)
at various times after SE and perfused via the left cardiac ventricle
with 4%paraformaldehyde in PBS. The brain was removed and
placed in the same fixative at 4 °C for at least 24 h. The cerebellum
and olfactory bulbs were removed. The first frontal 6 mm of the
cerebral hemispheres were removed and the following 8 mm,
which contained hippocampus, were collected and fixed with
paraffin. The brains were placed in a 20% sucrose solution in
phosphate buffer at room temperature for 48 h and in a 30%
sucrose solution at least 48 h. The brains were positioned on the
stage of a freezing microtome and were cut at a nominal thickness
of 10 wm in the horizontal plane and stored at —20 °C. The sections
were incubated with 3% H,0, for 5 min and then with phosphate-
buffered saline for 5 min. The sections were then treated with
primary antibodies for 24 h at 4 °C and thereafter incubated with
biotinylated goat antibodies against rabbit IgG as the secondary
antibody for 10 min. Subsequently, the sections were incubated
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Table 1
Behavioral episodes after LPCSE.
Group n Latency period Proportion Proportion
to stage IV of stage V of stage V
(mean +SD)
Pilo 54 47.4+9.1 42.6% 57.4%
Pilo +saline 54 46.9+9.6 50% 50%
Pilo + FK506 54 67.5+9.7° 74.1% 25.9%"

The data for behavioral episode after LPCSE or LPCSE with FK506. When FK506 was
administered prior to pilocarpine injection, the latency period was significantly
longer and the percent of stage V was considerably lower. Data are mean + SD.

* P<0.05 vs. pilo or saline + pilo.

with peroxidase-labelled streptoavidin for 10 min and then the
colour was developed with diaminobenzene. Finally, the sections
were counterstained with hematoxylin. The following primary
antibodies were used: rabbit polyclonal antibodies against rat
brain nNOS (1:1000; Chemicon), iNOS (1:5000; Chemicon) and
active caspase-3 (1:10; Chemicon).

2.9. Western blot analyses

For Western blot analyses of nNOS, iNOS and active caspase-3,
the right hippocampi were homogenized (1/10, w/v) in ice-cold
lysis buffer (Beyotime, China) with 1% PMSF (phenylmethylsulfo-
nyl fluoride). Samples were centrifuged at 12,000 rpm for 10 min
at 4 °C and the protein concentration of the resulting supernatant
was determined by the BCA (bicinchoninic acid) protein assay kit
(Beyotime, China) and stored at —80 °C.

Thirty micrograms of protein were separated by sodium
dodecyl sulfate polyacrylamide gel electropheresis (SDS-PAGE)
and transferred to nitrocellulose membranes. After blocking in 5%
fat-free milk for 1.5h, the membranes were incubated with
primary antibodies including anti-nNOS (1:1500; Chemicon), and
anti-iNOS (1:5000; Chemicon), anti-active caspase-3 (1:100;
Chemicon), at 4 °C overnight. Then the membranes were washed
and incubated with horseradish peroxidase (HRP)-conjugated
second antibody (1:3000; Santa Cruz Biotechnology, CA, USA) for
1 h. Immunoreactivity was developed by chemiluminescence kit
(Pierce, Rockford, IL, USA) and exposed to film. The bands on the
film were scanned and analyzed with an image analyzer (Alpha
Innotech, San Leandro, CA, USA).

2.10. Statistical analysis

Values are expressed as mean = standard deviation (S.D.).
Differences in experimental groups were determined by one-way
analysis of the variance followed by Newman-Keuls test, and groups
of animals with stage 4 and 5 seizures were analyzed by Chi-square
test. Significance was accepted at P < 0.05.

3. Results
3.1. Behavioral episodes
Behavioral episodes induced by pilocarpine injections showed

typical increases in their intensity and duration, gradually
progressing towards status epilepticus. The rats treated with
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Fig. 1. High power (40x ) photomicrographs showing H&E staining with hematoxylin and eosin of the hippocampal CA3 pyramidal neurons at 6 h and 7 days rats after LPCSE.
(A) The changes of the hippocampal CA3 pyramidal neurons at 6 h and 7 days in rats after SE with or without FK506. Bar = 20 pm. (A’) The number of surviving cells after SE.
Compared with control rats, the surviving cells of rats of SE group showed decrease significantly. FK506 could keep from cells damage. Bars indicate mean + SD. *P < 0.05 vs.

control. *P < 0.05 vs. pilo
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FK506 showed highly significant differences in their latency period
reaching to stage IV-V and the profile of proportions of rats
suffering from seizures of different intensities. The latency period
of the group with FK506 was significantly longer and the
percentage of animals reaching stage V was considerably lower
compared with pilo or saline + pilo group (P < 0.05) (Table 1).
Control animals did not exhibit any behavioral seizure activity.

3.2. Neuron loss in hippocampus after seizure and effect of FK506
against neuron loss

H&E staining showed that dead neurons in hippocampal CA3
region with pyknotic nuclei are clearly distinguishable from
surviving cells that show round and palely stained nuclei. Continu-
ous seizures led to cell death from 6 h to 7 days. As shown in Fig. 1A
and A, the surviving neuron numbers after SE were significantly
decreased compared with that of control (P < 0.05). Moreover,
FK506, a CaN (calcineurin) inhibitor, significantly attenuated the
neuron loss induced by seizures (P < 0.05) (Fig. 1A and A').

3.3. Alteration of NO level and NOS activation after LPCSE

NO level started to increase at 30 min after SE and remained
significantly elevated until 7 days with two peaks at 6 h and 7 days
(P < 0.01, P < 0.01, respectively, Fig. 2A). cNOS activity started to
increase at 30 min after SE, reached a maximum level at 6 h
(P < 0.05, P<0.01, respectively, Fig. 2B). In contrast, the iNOS
activity did not increase until 12 h, and attained the peak at 7 days

after SE (P < 0.05, P<0.01, respectively, Fig. 2C). After pre-
treatment with FK506, NO level at 6 h and 7 days, cNOS activation
at 6 h and iNOS activation at 7 days induced by seizures decreased
markedly (all P < 0.05, Fig. 2A’, A”, B’ and C’). The results suggested
that a time-dependent increase in NO level after SE coincided with
an increase in cNOS and iNOS activation, and that FK506 could
inhibit cNOS and iNOS, activation and hence, total NO level.

3.4. Alteration in MDA level and SOD activation after LPCSE

The MDA level started to increase at 30 min after SE and
reached a maximum level at 7 days (P < 0.05, P < 0.01, respec-
tively, Fig. 3A). SOD activation started to increase at early stage
(P < 0.05, Fig. 3B) with a peak at 2 h after SE (P < 0.01, Fig. 3B), and
returned to basal level at 24 h after SE (P > 0.05, Fig. 3B). However,
SOD activation started to increase again at 7 days after SE (P < 0.05,
Fig. 3B). Pre-treatment with FK506 could remarkably decrease
MDA level at 7 days after SE (P < 0.05, Fig. 3A’) and increase SOD
activation at 6 h and 7 days after SE (P < 0.05, Fig. 3B’ and B”). The
early increase in SOD activation following seizures maybe an early
compensatory reaction in response to increased MDA levels, which
is in agreement with earlier reports.?*

3.5. The immunohistochemical analysis of nNOS, iNOS and caspase-3
expression after LPCSE

In order to determine if hippocampal neuron death observed at
early stage following SE is attributable to oxidative stress and/or
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Fig. 2. Changes of NO level, cNOS and iNOS activity after LPCSE. (A) Changes of NO level after SE; (A’ and A”) the effects of FK506 on NO level at 6 h and 7 days after SE. (B)
Changes of cNOS activity after SE; (B") the effects of FK506 on cNOS activity at 6 h after SE. (C) Changes of iNOS activity after SE; (C’) the effects of FK506 on iNOS activity at 7
days after SE. Bars indicate mean + SD. *P < 0.05, **P < 0.01 vs. control. *P < 0.05 vs. pilo and or saline + pilo.
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Fig. 3. Changes of MDA level and SOD activities after SE induced by LPCSE. (A) Changes of MDA level after SE; (A’) the effects of FK506 on MDA level at 7 days after SE. (B)
Changes of SOD activity after SE; (B’ and B”) the effects of FK506 on SOD activity at 2 h and 7 days after SE. Bars indicate mean + SD. *P < 0.05, **P < 0.01 vs. control. *P < 0.05 vs.

pilo or saline + pilo.

caspase-3 cascade, we measured nNOS, iNOS and caspase-3
positive cells by immunohistochemistry. The results showed that
nNOS positive cells appeared at 6 h (Fig. 4A’) and iNOS and
caspase-3 positive cells appeared significantly at 7 days after SE
(Fig. 4B’ and '), respectively coincident with hippocampal neuron
death at 6 h and 7 days after SE (Fig. 1A and A’). FK506 was found to
inhibit the appearance of cells positive for nNOS, iNOS and
caspase-3 (Fig. 4A”, B” and C”). These results suggested that
oxidative stress mediated hippocampal neuron death was prior to
caspase-3 activation, and that FK506 could protect hippocampal
neurons from damage by suppressing oxidative stress at early
stage after SE and by inhibiting oxidative stress and caspase-3
cascade at later stage after SE.

3.6. The protein expression of nNOS, iNOS and caspase-3

To further determine if increased activation of nNOS, iNOS and
caspase-3 is related to an increase in their protein expression after
SE, Western blot analysis was performed at 2, 6, 72 h and 7 days. As
shown in Fig. 5A and A/, protein expression of nNOS increased at
2h and reached a peak at 6h after SE (P<0.05, P<0.01,
respectively), but protein expression of iNOS started to increase
at 6 h and reached maximum at 7 days after SE (P < 0.05, P < 0.01,
respectively). Meanwhile, protein expression of caspase-3 gradu-
ally increased from 72 h to 7 days after SE (P < 0.05, P < 0.01,
respectively). FK506 substantially inhibited protein expression of
nNOS at 6h after SE (P<0.05, Fig. 5B and B’), and protein
expression of iNOS (P < 0.05, Fig. 5C and C’) and caspase-3 at 7 days

after SE (P < 0.05, Fig. 5D and D’). The above results suggested that
increased activation of nNOS, iNOS and caspase-3 was related to an
increase of protein expression of nNOS, iNOS and caspase-3 after
SE. FK506 plays an important neuroprotection role by inhibiting
activation and protein expression of nNOS, iNOS and caspase-3.

4. Discussion

In our current model, NO overactivation and neuron death in
hippocampus was clearly observed after LPCSE. Administration of
FK506, an imunosupressive agent, could significantly rescue
neurons from death induced by SE. We found that NO was
activated at 30 min to 7 days with peak at 6 h and 7 days after SE,
which coincided with activation of cNOS and iNOS. Meanwhile,
MDA and SOD emerged in this period of LPCSE, but activated
caspase-3 protein was predominantly found at 3-7 days. These
results suggested that oxidative stress could be partially responsi-
ble for SE-induced neuron degeneration in the early stage. It is
known that after SE, the function of Mg?*/Ca%*ATPase that
regulates intracellular Ca?* concentrations is compromised,?>*
and that ATPase mediated uptake of Ca%" into the endoplasmic
reticulum is also less efficient, which could potentially result in
higher than normal resting intracellular Ca%* concentrations. The
increased intracellular Ca?* could potentially contribute towards
oxidative stress associated with SE.2%27 Oxidative stress is one of
the important mechanisms that play a role in the etiology of
seizure-induced neuronal death after first hour of acute phase of
seizures.” The most important effect of free radicals is lipid
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Fig. 4. The expression positive cells of nNOS, iNOS and caspase-3. (A, A’ and A”, 400 x ) Immunohistochemistry showed the effects of FK506 on positive cells of nNOS at 6 h after
SE. (B, B’ and B”, 600x ) Immunohistochemistry showed the effects of FK506 on positive cells of iNOS at 7 days after SE. (C, C’ and C”, 600 x ) Immunohistochemistry showed the
effects of FK506 on positive cells of caspase-3 at 7 days after SE. Bars indicate averages + SD. *P < 0.05, **P < 0.01 vs. control. *P < 0.05 vs. pilo or saline + pilo.

peroxidation. There is a growing body of evidence suggesting that
elevated lipid peroxidation levels and/or its metabolites are
potentially neurotoxic.?3° Seizures alter membrane lipid compo-
sition that can affect membrane fluidity permeability and
consequently the function of membrane-bound enzymes, which
in turn, may have serious consequences on neuronal functioning.>°
A previous study has also reported little evidence of caspase-3
activation, even with DNA laddering occurring at 24 h after SE in
the brain regions.>! Consistent with this, our data suggest that
oxidative stress mediated hippocampal neuron death occurs prior
to caspase-3 activation after LPCSE. The finding potentially
explains the mechanism of early cell death after SE and suggests
antioxidant-based neuroprotective strategies for SE.

NO alone is a poorly reactive species, however, it is able to react
rapidly with superoxide anion and produces highly oxidizing and
nitrating species, NO,~, NO3 ™~ and peroxynitrite that cause oxidative
damage via lipid peroxidation.>? Peroxynitrite, which is a highly
reactive free radical, has been shown to mediate much of the toxicity
of NO.>3 These secondary reactive nitrogen species are also capable
of modifying a diversity of biomolecular structures in the cell,®
including antioxidant enzymes leading to oxidative damage.

In our study, we found the activity of cNOS started to increase at
30 min and reached peak at 6 h after SE, while the activity of iNOS
increased at 12 h and reached peak at 7 days after SE, accounting for
much of the increase in NO activity. However, the acute increase in
NO activity is mainly mediated by cNOS, especially nNOS.2® These
results provide support for the participation of nNOS contributing to
oxidative damage immediately after SE, which may be one of the
potential mechanisms of seizures-induced neurotoxicity. It is

interesting to note that although labile nNOS activity is mainly
regulated by Ca®*, our results show another mechanism of its
regulation following SE, i.e., its increased expression.

In the nervous system, nNOS is largely responsible for NO
production in neurons, while iNOS has been implicated in an
inflammation response of glial cells and produces large amounts of
NO continuously for long periods. An induction of iNOS may
therefore play an important role during chronic stress and
apoptotic cell death in the hippocampus in SE rats.®

We found that the level of MDA, a measure of lipid peroxidation,
increased significantly after SE from 30 min with peak value on day
7. The results of increased MDA level following SE are consistent
with other reports.?® The increase of MDA level observed at 30 min
corresponds to an increase in NO level. These results suggest that
NO toxicity may be mediated by a direct effect of peroxynitrite
during the development of SE induced by pilocarpine.

SOD, which is considered to be an important antioxidant
enzyme, is capable of removing superoxide anion from the cell. The
increased SOD activity following SE at the early stage is in
agreement with earlier reports,>* and may represent an early
compensatory reaction in response to increased MDA levels found
to be increased at the same time. The decrease in SOD activity at
24 h to 3 days after SE that we discovered may be due to the
inactivating action of the secondary reactive nitrating species on
this antioxidant enzyme.

Being an immunosuppressive agent, FK506, has been used in
clinical settings for the prevention of allograft rejection.’®! It also
has strong neuroprotective effect following brain damages of
different origin?®?! and antiepileptic influences.>*
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Protein expression of nNOS and the effect of FK506 on nNOS at 6 h after SE.(Cand C’) Protein expression of iNOS and the effect of FK506 oniNOS at 7 days after SE. (D and D’ ) Protein
expression of caspase-3 and the effect of FK506 on caspase-3 at 7 days after SE. Bars indicate averages + SD. *P < 0.05, **P < 0.01 vs. control. *P < 0.05 vs. pilo or saline + pilo.

KF506 binds to FK-binding proteins (FKBPs), to inhibit the
activity of calcineurin, which is an enzymatic protein with
phosphatase activity.3®> It is reported that FK506 can inhibit
NMDA-induced death of neurons by increasing nNOS phosphory-
lation, which in turn results in the inhibition of the enzyme activity
and hence decreased levels of reactive nitric oxide species.>®

In our study, we found that FK506 not only inhibits NO and
MDA level and the expression of nNOS, iNOS and caspase-3 but also
increases SOD activity, suggesting that FK506 protects hippocam-
pal neurons from damage via suppressing oxidative stress at early
stage after SE and by inhibiting oxidative stress and caspase-3
cascade at later stages after SE.

In conclusion, our results suggest that NO-mediated oxidative
stress may have dual neurotoxic effects following SE: An early
damage likely resulting from mitochondrial dysfunction and a
prolonged apoptotic neuronal cell death involving in the activation
of caspase cascade. The findings have implications for potential
clinical use of FK506 against SE.
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