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Abstract

Purpose  Stat6 signaling is active in cancer cells and IL-4-
induced Stat6 activities or Stat6 activational phenotypes
vary among cancer cells. This study aimed at investigating
possible mechanism(s) involved in the formation of varying
Stat6 activities/phenotypes.

Methods Stat6 regulatory genes, SOCS-1 and SHP-1,
were examined for mRNA expression using RT-PCR, and
their promoter DNA methylation was assayed by methyla-
tion-specific PCR in Stat6-phenotyped colon cancer cell
lines. DNA methylation was then verified by sequencing.
RT-PCR assay and Western blotting were used to detect the
expression of SOCS-1 and SHP-1 after demethylation
using 5-aza-2'-deoxycytidine.
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Results Compared with Stat6™! Caco-2 cells, Stat6"ieh
HT-29 cells showed decreased constitutive expression of
SOCS-1 and SHP-1, which correlated with DNA hyperme-
thylation in these genes’ promoters. Interestingly, demeth-
ylation in HT-29 cells recovered the constitutive expression
of SOCS-1 and SHP-1.

Conclusions These findings suggest that DNA methyla-
tion controls the constitutive expression of negative Stat6
regulatory genes, which may affect Stat6 activities.
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Introduction

Functionally active Stat6 signaling pathway plays an
important role in biology in a variety of cell types, includ-
ing cancer cells and immune cells (Bruns and Kaplan 2006;
Ansel etal. 2006). The IL-4/Stat6 signaling pathway is
composed of at least six associated molecules including IL-
4, TL-4Ra, common y chain (yc), Jakl, Jak3, and Stat6,
which forms a cascade of interactions upon activation by
IL-4 (Nelms et al. 1999). Activated Stat6 binds to the pro-
moter of IL-4-responsive genes by which it may up- or
down-regulate gene expression. Thus far, at least 35 genes
have been shown to be Stat6-regulated (Hebenstreit et al.
2006) and this number is likely to increase (Zhang et al.
2008) suggesting the pathway’s broad importance in physi-
ology and pathophysiology.

The Stat6 pathway has been extensively studied in gene
knockout animals. On the front of cancer studies, it is
important to note that mice lacking Stat6 manifest
enhanced tumor immunity to both primary and metastatic
mammary carcinomas, and induce spontaneous rejection of
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implanted tumors (Kacha et al. 2000; Ostrand-Rosenberg
et al. 2000). We have shown that human breast cancer and
colon cancer cell lines lacking Stat6 signaling (Stat6™")
exhibit increased susceptibility to spontaneous apoptosis
and less invasiveness/metastasis (Zhang etal. 2008; Li
etal. 2008), in keeping with the observations in Stat6
knockout mice. Furthermore, constitutive activation of
Stat6 is frequently observed in a number of human malig-
nancies (Bruns and Kaplan 2006). Collectively, these
observations strongly suggest a role of Stat6 in the front
line of carcinogenesis. We therefore favor the hypothesis
that a functionally active Stat6 signaling is beneficial to
cancer cells at several stages of carcinogenesis including
cancer transformation, growth and metastasis, possibly by
promoting an exaggerated Th2 environment, gaining resis-
tance to apoptosis and escaping the host immunosurveil-
lance (Bruns and Kaplan 2006; Nelms et al. 1999; Li et al.
2008; Ostrand-Rosenberg et al. 2004). Accordingly, we
have proposed that Stat6 activities may serve as a bio-
marker capable of forecasting cancer cell’s fates for their
susceptibility to apoptosis and invasive/metastatic ability
(Li et al. 2008).

The controlling mechanisms of Stat6 signaling have
been well investigated and there are at least two molecules
that are known to negatively regulate the Stat6 pathway.
Suppressor of cytokine signaling-1 (SOCS-1) is demon-
strated to be a potent inhibitor of the IL-4/Stat6 pathway by
suppressing the activation of Jakl, Jak3, and Stat6 in
response to IL-4 (Losman etal. 1999; Hebenstreit et al.
2005; Dickensheets et al. 2007). Activated Stat6, on the
other hand, induces the expression of SOCS-1, which in
turn inhibits further activation of Stat6, forming a negative
feedback control to modulate proper activation of the Stat6
(Hebenstreit et al. 2005; Dickensheets et al. 2007). SHP-1
(SH2-containing phosphatase-1) is a protein tyrosine phos-
phatase that has been indicated in negative regulation of
Stat6 activation by dephosphorylating the tyrosine of
activated Jak3 (Haque et al. 1998; Rane and Reddy 2002;
Hanson et al. 2003).

It is an interesting phenomenon that human EBV-B cell
lines show dramatic differences in Stat6 activity by EMSA
assay and we have defined three naturally occurring IL-4-
induced Stat6 activational phenotypes, termed as Stat6he",
Stat6'°", and Stat6™!' (Zhang et al. 2003). The phenomenon
also appears to be true in breast and colon cancer cells
(Zhang et al. 2008; Li et al. 2008). Attempts to understand
molecular mechanisms that may have generated these Stat6
phenotypes have failed to correlate them with constitutive
Stat6 protein levels and polymorphisms of the /L4RA gene
(Zhang et al. 2003). Recently, we have phenotyped two
human colon cancer cell lines for their Stat6 activities, of
which HT-29 carries active Stat6"€" phenotype and Caco-2,
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inactive Stat6™!' phenotype (Li et al. 2008). Interestingly,
negative regulator genes SOCS-I and SHP-1 show under-
expression in the Stat6"€" HT-29 cells but overexpression
in the Stat6™! Caco-2 cells (Yuan et al. 2008).

Although it is not certain if differentially expressed
SOCS-1 and SHP-I may be involved in the formation of
Stat6 phenotypes, the observation is sufficiently interesting
for further investigation. In carcinogenesis, aberration of
DNA methylation, referred to as epigenetic alterations, is a
common event that causes altered gene expression which is
often utilized to benefit transformed cancer cells (Ushijima
2005). Relevant to our studies are the observations that
SOCS-1 gene has been found to be hypermethylated in a
number of cancers including hepatocellular carcinoma
(Yoshikawa etal. 2001), hepatoblastomas (Nagai et al.
2003), gastric cancer (Oshimo et al. 2004), and colon can-
cer (Fujitake et al. 2004). SHP-1 gene silencing due to pro-
moter methylation has also been reported in lymphomas
and leukemia as well as in many haematopoietic cell lines
(Valentino and Pierre 2006). Taken the above findings
together, we favor the hypothesis that DNA methylation
may be a mechanism resulting in differential expression of
Stat6 regulatory genes SOCS-I1 and SHP-1, which in turn
influences Stat6 activities.

In the current study, we focus on the differential expres-
sion of Stat6 regulatory genes and their DNA methylation
status in relation to Stat6 phenotypes and show that (1) HT-
29 defined as active Stat6"€" phenotype shows much
decreased constitutive mRNA expression of Stat6 negative
regulator genes SOCS-1 and SHP-1, (2) Stat6"&" HT-29
cells exhibit DNA hypermethylation in the promoters of
SOCS-1 and SHP-1 genes compared with those in Stat6™!
Caco-2 cells, (3) DNA demethylation using 5-Aza-CdR
upregulates the mRNA expression of otherwise hyperme-
thylated SOCS-1 and SHP-1 in HT-29 cells. These findings
may have important implications in Stat6 regulatory mech-
anisms in relation to constitutively activated Stat6 in
cancers.

Materials and methods
Cell lines

Epstein-Barr virus (EBV)-transformed lymphoblastoid B
(EBV-B) cell lines were established and phenotyped for
Stat6 activity previously (Zhang et al. 2003). Human colon
cancer cell lines HT-29 and Caco-2 were obtained from
American Type Culture Collection (ATCC). Cells were
cultured in RPMI 1640 medium supplemented with 1% calf
serum, 2.05 mM L-glutamine, 100 U/ml penicillin and
100 pg/ml streptomycin at 37°C with 5% CO,
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Determination of Stat6 activational phenotypes

Phenotyping of IL-4-activated Stat6 was performed using a
semi-quantitative EMSA method, we developed earlier
(Zhang et al. 2003), and colon cancer cell lines HT-29 and
Caco-2 were phenotyped for Stat6 activity in a previous
report (Li et al. 2008).

RNA isolation and semiquantitative RT-PCR

HT-29 and Caco-2 cells were cultured in standard culture
flask at a concentration of 2 x 10° cells/flask and allowed
for spontaneous growth for 4 days. Total RNA was isolated
using Trizol reagent (Invitrogen, CA, USA) according to
the manufacture’s instructions. The first strand of cDNA
was carried out using Revert Aid™ First Strand cDNA
Synthesis Kit (MBI Fermentas, USA). PCR was performed
in a final volume of 25 pl containing 1.5 pl cDNA, 10 pmol
of each primer, 2x Tag PCR Mix 12.5 ul and DEPC-
treated water (Tiangen Co., Beijing, China). For quantita-
tive analysis, RT-PCR products were scanned using a gel
imaging scanning system (GeneGenius from Syngene,
England). The obtained area readings of target genes were
compared with those of human GAPDH gene and the
results were expressed as a ratio. Individual RT-PCR tests
were repeated on at least three independent occasions.
Primer sequences and PCR parameters used in RT-PCR
were shown in Table 1.

DNA isolation and sodium bisulphite conversion

Genomic DNA was isolated from at most 5 x 10° cells
with DNeasy Tissue Kit (Qiagen, Germany) following the

manufacturer’s instruction. Genomic DNA (1.1 pg) was
modified with sodium bisulphate using the EZ DNA Modi-
fication-Gold™ Kit (Zymo research Biotech Co., CA,
USA). For accuracy, equal amount of DNA from different
samples was adjusted. Untreated DNA from normal human
placenta tissues was used as control for unmethylated alle-
les, while DNA treated in vitro with Sss1 methyltransferase
(New England Biolabs, Inc., MA, USA) was used as posi-
tive control for methylated alleles.

Methylation-specific polymerase chain reaction (MSP)

The methylation-specific polymerase chain reaction
(MSP) for promoter methylation was performed as
described (Herman et al. 1996) and modified DNA was
subjected to two separate PCRs. MSP primers were
designed to amplify the methylated (M-MSP) and unme-
thylated (U-MSP) alleles (Table 1). Methylation-specific
primers for SOCS-1 and SHP-1 were previously described
by others (Weber et al. 2005; Oka et al. 2002). MSP was
performed in a thermal cycler (PTC-200, USA) with the
following cycling conditions: 95°C for 5 min, 40 cycles of
95°C for 30 s, specific annealing temperature (SOCS-1 at
60°C, SHP-1 at 58°C, SOCS-3 at 60°C) for 1 min, 72°C
for 1 min, and a final extension of 10 min at 72°C. Indi-
vidual MSP tests were repeated on three independent
occasions.

DNA sequencing
To confirm CpG methylation, MSP products were purified,

sequenced bidirectionally, and analyzed on an automated
DNA sequence analyzer (Applied Biosystems, CA, USA).

Table 1 PCR primer sequences

and reaction conditions Genes Sequences (5'-3") PCR conditions*  Size (bp)
SOCS-1 F: GGAGCGGATGGGTGTAGGGG 64 (30) 178
R: GAGGTAGGAGGTGCGAGTTCAG
SHP-1 F: GTCGGAGTACGGGAACATCACC 61 (30) 387
R: CCCAGGGCTTTATTTACAAGAGGAG
SHP-2 F: ATGAGGAGACACGGGTAGGACT 62 (35) 303
R: GCTATGTGTGAAAGTTGATCCC
GAPDH F: CATGAGAAGTATGACAACAGCCT 56 (30) 113
R: AGTCCTTCCACGATACCAAAGT
SOCS-1 M-MSP)  F:TGAAGATGGTTTCGGGATTTACGA 60 (40) 183
R: ACAACTCCTACAACGACCGCACG
SOCS-1 (U-MSP)  F: TGAAGATGGTTTTGGGATTTATGA 60 (40) 184
R: CACAACTCCTACAACAACCACACAC
SHP-1 (M-MSP) F: GAACGTTATTATAGTATAGCGTTC 58 (40) 159
* Annealing Temperature in °C R: TCACGCATACGAACCCAAACG
(number of cycles) SHP-1 (U-MSP) F: GTGAATGTTATTATAGTATAGTGTTTGG 56 (40) 162

F forward primer, R reverse
primer

R: TTCACACATACAAACCCAAACAAT
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Sequences were compared with wild-type sequence of
SOCS-1 and SHP-1.

DNA demethylation using 5-Aza-CdR

Demethylation agent 5-Aza-CdR (10 pM, Sigma Co., St.
Louis, IL, USA) was used to treat HT-29 cells at 37°C for
4 days (Oka et al. 2002). Cells were then harvested on day
4 and tested for mRNA expression by RT-PCR and protein
expression analysis by Western blotting.

Western Blot analysis

Total proteins with and without 5-Aza-CdR treatment
were prepared using Total Protein Extraction Kit (Beyo-
time Institute of Biotechnology, Jiangsu, China) and
quantified. Equal amounts of proteins were subjected to
electrophoresis on a 12% SDS-polyacrylamide gel, and
transferred to PVDF membrane (Ameresco, USA). The
membrane was incubated with blocking buffer for 2 h
first at room temperature, and then incubated overnight
at 4°C with the primary polyclonal antibody against
SHP-1 (Upstate, NY, USA) or f-actin (Santa Cruz Bio-
technology, CA, USA) as a normalizing reference.
Quantitative densitometry was performed using a com-
puter-based image analysis system (GeneGenius from
Syngene, England).

Statistical analysis

Statistical analysis was performed using independent-
samples ¢ test (SPSS statistical software Version 15.0)
and significance was defined as a P <0.05 for all
analyses and data were presented as mean =+ standard
deviation (M £ SD).

Results

Phenotyping of IL-4-induced Stat6 activity in HT-29
and Caco-2 human colon cancer cell lines

By reference to an EBV-B cell line with confirmed IL-4-
induced Stat6"e" activational phenotype (DNA binding
activity) as a standard control (Zhang et al. 2003), we
were able to assign Stat6 activational phenotypes for
colon cancer cell lines using EMSA assay (Fig. 1). As
seen in Fig. 1, HT-29 was assigned as Stat6"2" pheno-
type and Caco-2, Stat6™ phenotype. Cells carrying
Stat6"€" phenotype have been shown to exhibit resis-
tance to apoptosis and increased metastatic capability in
breast and colon cancer cells (Zhang et al. 2008; Li et al.
2008).
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Fig. 1 Colon cancer cell lines HT-29 and Caco-2 show distinct IL-4/
Stat6 EMSA profiles corresponding to differential Stat6 phenotypes.
The criteria of assigning Stat6 phenotypes were established previously
(Zhang et al. 2003). The phenotyping of these two cell lines was re-
ported by us in a previous report (reproduced from Li et al. 2008 with
permission)

HT-29 (Stat6"2") cells constitutively express less mRNA
of SOCS-1 and SHP-1 than Caco-2 (Stat6™") cells

SOCS-1 and SHP-1 are known negative regulators of the
Stat6 pathway. It was interesting to note that, as shown in
Fig. 2, HT-29 cells carrying active Stat6"€" phenotype cor-
related with decreased constitutive mRNA levels of its neg-
ative or inhibiting regulatory genes SOCS-1 and SHP-I.
Similarly, a reciprocal pattern of increased mRNA expres-
sion of SOCS-1 and SHP-1 in Caco-2 cells carrying inac-
tive Stat6™!! phenotype was interesting (Fig.2). No
difference was observed in mRNA expression of SHP-2
between HT-29 and Caco-2 cells (Fig. 2).

Decreased expression of SOCS-1 and SHP-1 correlates
with promoter DNA hypermethylation in HT-29 cells

The above observations were interesting in that two regula-
tory genes, SOCS-1 and SHP-I, simultaneously showed
decreased mRNA expression in HT-29 cells as compared
with that in Caco-2 cells (Fig. 2). As DNA methylation was
frequently observed to be correlated with gene transcription
silencing, especially in cancer cells, we then asked whether
DNA methylation would be one of the mechanisms respon-
sible for the differential mRNA expression between cell
lines as shown in Fig. 2. Using MSP method, we demon-
strated that all two genes SOCS-1 (Fig. 3a, b) and SHP-1
(Fig. 4a, b) exhibited higher DNA methylation in their pro-
moter regions. The DNA methylation in these genes was
later confirmed by DNA sequencing (Figs. 3c, 4c).
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Fig. 2 Active Stat6"€" HT-29 cells express less constitutive mRNA of
Stat6 negative regulators SOCS-1 and SHP-I than inactive Stat6™!
Caco-2 cells. a Gel images of RT-PCR products of SOCS-1, SHP-1,
and SHP-2. The OD readings of individual target gene products were
compared with those of GAPDH products within the same lane and the
results were expressed as a ratio of target gene/GAPDH. b Summary
presentation of OD ratios from at least three independent culture/RT-
PCR tests for each gene. **P<0.01 by statistical analyses

DNA demethylation using 5-Aza-CdR recovers mRNA
expression of SOCS-1 and SHP-1 in HT-29 cells

In order to verify if hypermethylation was indeed responsi-
ble for decreased expression of two regulatory genes, we
tested reversibility of gene expression by DNA demethyla-
tion using 5-Aza-CdR treatment. As seen in Fig. 5, when
HT-29 cells, which showed gene hypermethylation
(Figs. 3, 4), were treated with 10 uM of 5-Aza-CdR for
4 days in culture media, the mRNA expression was upregu-
lated in two genes SOCS-1 and SHP-1. This recovered
expression after DNA demethylation was also demonstra-
ble at protein level at least for one gene tested (SHP-I;
Fig. 5). These results strongly suggested that promoter
DNA hypermethylation in these genes was responsible for
the low expression as observed in HT-29 cells (Fig. 2).

Discussion

Recent studies have indicated that functionally active Stat6
may play an important role in carcinogenesis and prognosis
of cancer (Wurster et al. 2000). Direct evidence has come
from basic research that activated Stat6 induces resistance

to apoptosis (Galka et al. 2004; Zhang et al. 2006, 2008; Li
et al. 2008), clinical observation that Stat6 is constitutively
activated in a number of human cancers (Bruns and Kaplan
2006; Ni et al. 2002), and Stat6 knockout mouse models
that exhibit resistance to metastatic disease and spontane-
ously reject implanted tumors (Kacha et al. 2000; Ostrand-
Rosenberg et al. 2000). As mentioned above, there are three
naturally occurring IL-4-induced Stat6 activation pheno-
types, termed as Stat6"e" Stat6'¥, and Stat6™! (Zhang
et al. 2003). Similar to Stat6—'~ animals, the naturally
occurring human Stat6™! phenotype shows several func-
tional differences important to cancer cell’s survival and
progression including the increased expression of Thl cyto-
kines IL-12, TNF-o, and IFN-y (Li et al. 2008; Zhang et al.
2004), susceptibility to apoptosis (Zhang et al. 2008; Li
et al. 2008) and decreased metastatic ability (Li et al. 2008).

Widely studied human colon cancer lines, HT-29 and
Caco-2, are interesting because they show very different
Stat6 activities or phenotypes (Fig. 1). HT-29 cells present
active Stat6"€" phenotype which exhibits resistance to
apoptosis and increased metastatic ability (Li et al. 2008).
Relevant to these phenotypic features is that HT-29 cells, in
comparison with caco-2 cells, express higher levels of anti-
apoptotic and/or pro-metastatic genes Survivin, MDM?2, and
TMPRSS4 (transmembrane protease serine 4), but lower
levels of pro-apoptotic and/or anti-metastatic genes P53,
BAX, and CAVI (Caveolin-1) (Li et al. 2008).

In effort to reveal the possible underlying mechanism(s)
that may have generated IL-4/Stat6 phenotypes, we have
previously investigated several possibilities, including con-
stitutive Stat6 expression, a bi-allelic SNP polymorphism
within the 3'UTR of the STAT6 gene and IL4RA gene poly-
morphism, all of which are failed to correlate with Stat6
phenotypes (Zhang et al. 2003). We have also been unable
to find differences in constitutive mRNA expression of Jak1
and Jak3 at least between Stat6"&" HT-29 and Stat6™!
Caco-2 cells (unpublished observations). Recently, we have
focused on investigating negative regulator genes and
found decreased expression of SOCS-I and SHP-I, in
active Stat6"e" HT-29 cells (Yuan et al. 2008). These find-
ings are interesting and have led us to hypothesize that, as
alterations in DNA methylation are frequent events during
cancer cell’s transformation (Ushijima 2005), there may be
differences in DNA methylation resulting in differential
expression of SOCS-1 and SHP-I between HT-29 and
Caco-2 cells.

Stat6"e" HT-29 cells reproducibly express less mRNA
of SOCS-1 and SHP-1 when compared with Stat6™!" Caco-
2 cells (Fig. 2). Using MSP assay, we have detected higher
DNA methylation in the promoter regions of at least two
genes SOCS-1 and SHP-1, respectively, in HT-29 cells in
comparison with Caco-2 cells (Figs. 3, 4). DNA methyla-
tion, unlike other epigenetic changes, does not alter the
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Fig. 3 Active Stat6"2" HT-29 cells exhibit higher DNA methylation
in the promoter of SOCS-1 than that in inactive Stat6™! Caco-2 cells.
a MSP detection of SOCS-1 methylation in HT-29 and Caco-2 cells.
Relative methylation levels were measured for SOCS-I whose OD
readings over methylated product (M) were compared with that of a
methylation-positive control (MPC, indicated by a vertical arrow), and
the results were shown as a ratio of M/MPC. U and UPC indicate un-
methylated product and unmethylation-positive control, respectively.
As can be seen under U, both HT-29 and Caco-2 carry unmethylated

nucleotide sequence and, therefore, is reversible (Esteller
et al. 2001; Baylin 2001; Grgnbaek et al. 2007). To con-
firm that DNA hypermethylation indeed suppresses the
gene expression in HT-29 cells, we have further performed
demethylation assay using 5-Aza-CdR that inhibits the
activity of methyltransferase (Momparler 2005). As
expected, 5-Aza-CdR treatment in HT-29 cells is able to
upregulate the expression of all two hypermethylated
genes SOCS-1 and SHP-1 (Fig. 5a, b), supporting such a
hypothesis that DNA methylation is responsible for
decreased expression of these genes. Furthermore, the
upregulation of gene expression after demethylation is also
confirmable at protein level at least for SHP-1 whose anti-
body was available (Fig. 5c, d). It is conceivable that,
because of insufficient levels of SOCS-1 and SHP-1, Stat6
may remain highly active in cells which would show over-
performed Stat6-related functions such as exaggerated Th2
response (Nelms etal. 1999), resistance to apoptosis
(Nelms et al. 1999; Zhang et al. 2008; Li et al. 2008) and
higher metastatic capability (Li et al. 2008). Having dem-
onstrated that DNA hypermethylation may be a mecha-
nism restricting the expression of Stat6 negative regulatory
genes, we have further tested whether demethylation
would influence Stat6-related functions such as resistance
to apoptosis. Indeed, demethylation using 5-Aza-CdR in
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products suggesting incomplete methylation of SOCS-I. b Diagram-
matic comparison of methylation levels (OD ratios) obtained from
three independent tests for HT-29 and Caco-2. ¢ Confirmation of
methylation by sequencing. Wild-type sequence of SOCS-/ shown at
top and the bottom sequence is methylation-positive sequence. Caco-2
was sequenced reversely and therefore, the middle sequence represents
the complementary sequence of the sequenced DNA. After bisulfite
treatment, unmethylated C is converted to “T” whereas methylated C
remains as C (underlined). **P < 0.01 by statistical analysis

HT-29 cells reverses the apoptosis-resistant cancer cells
(Li etal. 2008) to be growth-retarded, suggesting
increased susceptibility to apoptosis and cell death (data
not shown). In this context, our findings provide new evi-
dence that hypermethylation results in diminished expres-
sion of SOCS-1 and SHP-1 which may influence cancer
cell’s phenotypes via Stat6 activities (Fig. 1). It should be
noted that the demethylation action of 5-Aza-CdR is non-
specific and the observations in Fig. 5 may be a collective
outcome due to DNA demethylation in many genes.
Nevertheless, the current findings strongly suggest the use-
fulness of epigenetic therapy (Grgnbaek et al. 2007; Issa
2007).

In conclusion, we have shown for the first time that
active Stat6"€" HT-29 colon cancer cells express insuffi-
cient levels of Stat6 negative regulators SOCS-1 and
SHP-1 in comparison with inactive Stat6™! Caco-2 cells.
The DNA hypermethylation in the promoter regions of
these genes may be one, if not the sole, mechanism which
is responsible for the decreased gene expression. The cur-
rent findings may have important implications in the for-
mation of varying Stat6 activities among different cancer
cells (Zhang et al. 2008; Li et al. 2008). As constitutive
activation of Stat6 is frequently observed in many human
cancer cells (Bruns and Kaplan 2006), our findings
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